The version of this paper printed in the book contains errors
(which resulted from re-editing of the text after I did the proofs).
Please use this correct version instead of it.

Chapter 3

SEMANTICS AS BASED ON INFERENCE

Jaroslav Peregrin*
Dept. of Logic, Institute of Philosophy
Academy of Sciences of the Czech Republic, Prague

peregrin@ff.cuni.cz

1. There is more to semantics than inference ...

We may say that logic is the study of consequence; and the pioneers of
modern formal logic (especially Hilbert, but also, e.g., the early Carnap)
hoped to be able to theoretically reconstruct consequence in terms of the
relation of derivability (and, consequently, necessary truth in terms of
provability or theoremhood — derivability from an empty set of premises).
The idea was that the general logical machinery will yield us derivability
as the facsimile of the relation of consequence, and once we are able
to formulate appropriate axioms of a scientific discipline, the class of
resulting theorems will be the facsimile of the class of truths of the
discipline.

These hopes were largely shattered by the incompleteness proof of
Godel (1931): this result appeared to indicate that there was no hope
for fine-tuning our axiom systems so that theoremhood would come to
align with truth. Tarski (1936) then indicated that there are also rela-
tively independent reasons to doubt that we might ever be able to align
derivability with consequence: he argued that whereas intuitively the
statement every natural number has the property P follows from the
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set of statements {n has the property P}n—1, . oo, it can never be made
derivable from it (unless, of course, we stretch the concept of derivability
as to allow for infinite derivations).

These results reinforced the picture, present in the back of many lo-
gicians’ minds anyway, of logic as trying to capture, using our parochial
and fatally imperfect means, truth and consequence that are somewhere
‘out there’, wholly independent of us. And as whether a sentence is (nec-
essarily) true? and what follows from it is a matter of its meaning, it also
appeared to indicate that there must be much more to meaning than can
be captured by inference rules. In particular, there must be more to the
meanings of logical and mathematical constants than is captured by the
inference rules we are able to construct as governing them.

Symptomatic of this state of mind is Arthur Prior’s famous denial® of
the possibility of assigning a logical constant its meaning by means of
inferential rules:

It is one thing to define ‘conjunction-forming sign’, and quite another
to define ‘and’. We may say, for example, that a conjunction-forming
sign is any sign which, when placed between any pair of sentences P
and Q, forms a sentence which may be inferred from P and Q together,
and from which we may infer P and infer Q. Or we may say that it is
a sign which is true when both P and Q are true, and otherwise false.
Each of these tells us something that could be meant by saying that
‘and’, for instance, or ‘&’, is a conjunction—forming sign. But neither
of them tells us what is meant by ‘and’ or by ‘&’ itself. Moreover, each
of the above definitions implies that the sentence formed by placing
a conjunction-forming sign between two other sentences already has a
meaning. For only what already has a meaning can be true or false (...),
and only what already has a meaning can be inferred from anything, or
have anything inferred from it. (1964, p.191)

2. ... but there cannot be more!

Some of the most outstanding philosophers of language of the XX.
century, on the other hand, arrived at the conclusion that there could
be hardly any way of furnishing our words with meanings save by sub-
ordinating them to certain rules — the rules, as Wittgenstein (1953)
famously put it, of our language games.

The point of departure of Wittgenstein’s later philosophy was the
recognition that seeing language, as he himself did earlier in the Trac-
tatus, as a complex set of names is plainly unwarranted. Most of our

2In this paper we will have nothing to say about empirical statements and hence about other
than necessary truths.
3See Prior (1960); and also Prior (1964).
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words are not names in any reasonable sense of the word name, and
hence if they have meaning, they must have acquired it in a way other
than by having been used to christen an object. And Wittgenstein con-
cluded that the only possible way this could have happened is that the
words have come to be governed by various kinds of rules. Thus, in
his conversation with the members of the Vienna Circle he claims (see
Waisman (1984), p. 105):

For Frege, the choice was as follows: either we are dealing with ink
marks on paper or else these marks are signs of something, and what
they represent is their meaning. That these alternatives are wrongly
conceived is shown by the game of chess: here we are not dealing with
the wooden pieces, and yet these pieces do not represent anything — in
Frege’s sense they have no meaning. There is still a third possibility;
the signs can be used as in a game.

This indicates that for Wittgenstein, Prior’s claim “only what already
has a meaning can be inferred from anything, or have anything inferred
from it” would be no more plausible than the claim that only what is
already a pawn, a knight etc. can be subordinated to the rules of chess:
just like we make a piece of wood (or of something else) into a pawn or a
knight by choosing to treat it according to the rules of chess?, we make
a sound- or an inscription-type into a meaningful word by subordinating
it to the rules of language.

As Sellars (1974) puts it, there are essentially three kinds of rules
governing our words:

language entry transitions, or rules of the world-language type intralin-
guistic moves, or rules of the language-language type language departure
transitions, or rules of the language-world type

Whereas the first and the last type is restricted to empirical words,
nonempirical words are left with being furnished with meaning by means
of the middle one, which are essentially inferential rules. Meaning of
such a word thus comes to be identified with its inferential role’.

In some cases, this view appears to be markedly plausible (pace Prior®).
How could “and” come to mean what it does? By being attached, as a

4Note that though the shape of the piece is usually indicative of its role, having a certain
shape is neither necessary, nor sufficient to be, say, a pawn.

S5Tnferentialism in Wittgenstein’s later philosophy is discussed bv Medina (2001); for an ac-
count of Sellars’ semantics see Marras (1978).

SWhat Prior did show was that not every kind of inferential pattern can be reasonably
taken as furnishing a sign with a meaning. (His famous example is the ‘vicious’ pattern
A = A tonk B; A tonk B = B.) A But it is hard to say why it should follow that the
meaning of ‘and’ is not determined by the obvious pattern: is not what one learns, when one
learns the meaning of ‘and’, precisely that A and B is true (or correctly assertible) just in
case both A and B are? (See Peregrin (2001), Chapter 8.)
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label, to the standard truth function? But surely we were in possession
of “and” long before we came to possess an explicit concept of function
— hence how could we have agreed on calling it “and”? The Sellarsian
answer is that by accepting the inference pattern

Aand B= A
Aand B= B
A, B= Aand B

(which need not have been, and surely was not, a matter of accept-
ing an explicit convention, but rather of handling the signs involved in
a certain way).

In other cases it is perhaps less straightforwardly plausible, but still
urged by many theoreticians. How could numerals come to mean what
they do? By being attached, as labels, to numbers? But how could we
achieve this? Even if we submit that numbers quite unproblematically
exist (within a Platonist heaven), we surely cannot point at them, so how
could we have agreed on which particular number would be denoted by,
say, the numeral “87634”7 The inferentialist has an answer: numbers are
secondary to the rules of arithmetic, such as those articulated by means
of Peano axioms; and hence 87634 is simply a ‘node’ within the structure
articulated by the axioms, namely the node which is at a particular
distance from zero. As Quine (1969), p.45 puts it: “There is no saying
absolutely what the numbers are, there is only arithmetic.”

All of this appears to suggest that there cannot be more to the mean-
ings of logical and mathematical constants than is captured by the in-
ference rules governing them. Hence we appear to face the following
question: Can the standard meanings of logical and mathematical con-
stants be seen (pace Tarski & comp.) as creatures of entirely inferential
rules?

3. Disjunction

An inferentialist has an easy time while grappling with “and”; but
troubles begin as soon as he turns his attention to the (classical) “or”.
There seems to be no set of inferential rules pinning down the meaning
of “or” to the standard truth-function. Indeed “or” can be plausibly

seen as governed by

A = A or B;
B = A or B,
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but then we would need to stipulate that A or B is not true unless
either A or B is. Of course we might have

not-A, not-B = not-(A or B),

but this presupposes the (classical) not, and hence only shifts the
burden of inferential delimitation from not to not, which is surely no
easier.

In fact as long as we construe inference as amounting to truth—preservation,
there can be no way to inferentially express that a sentence is, under
some conditions, not true. (And it is well-known that the axioms of the
classical propositional calculus admit theories with true disjunctions of
false disjuncts”).

Perhaps the way out of this could be to part company with classical
logic (and subscribe to, say, something like intuitionism) — but how,
then, could the classical ”or” have come into being?

I envisage two kinds of answers to this question:

(1) It did not exist prior to our having an explicit idea of function
and was only later procured from the pre-classical ”or” by means of an
explicit rectification.

(2) There is a stronger (and still reasonable) concept of inferential
pattern such that there is an inferential pattern able to grant ”"or” its
classical semantics.

In this paper I aim to explore the second alternative. The proposal
I will make is that an inferential pattern should be read not simply as
giving a list of (schematic) instances of inference, but rather as giving
a list which is purported to be exhaustive. Why should it be read in
this way? Because that is what we standardly mean when we make
lists or enumerate. If I say “My children are Tom and Jerry”, then
what is normally taken for granted is that these are all my children.
This has been noted by McCarthy (1980), whom it led to the model-
theoretic concept of circumscription; and indeed our proposal is parallel
to McCarthy’s (see also Hintikka (1988) for an elaboration).

To say that we should construe inferential patterns in this way is
to say that we should read them as containing, as it were, an implicit

"It is usually assumed that the proofs of soundness and completeness of the propositional
calculus establish that its axiomatics and its truth-functional semantics are two sides of the
same coin. But this is not true in the sense that the axiomatics would pin down the meanings
of the connectives to the usual truth-functions. It fixes their meanings in the sense that if
the meanings are truth-functions, then they are the usual ones, but it is compatible also with
certain non-truth functional interpretations.
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. and nothing else: hence

A= AorB
B= AorB

should be read as ”A or B is true if either A is true, or B is true —
and in no other case”. It is clear that by this reading, the correct clas-
sical semantics for ”or” is secured.

I gave a detailed discussion of how this approach fares w.r.t. individual
logical connectives elsewhere (see Peregrin, in print), so here we may
ascend to a more global perspective.

4. Standard properties of inference

Let us make our conceptual framework a bit more explicit. What we
call inference is a relation between sequences of sentences and sentences
— we assume that languages come with their relations of inference (which
is constitutive of their semantics). An inference is called standard if it
has the following properties (where A, B, C' stand for sentences and X,
Y, Z for sequences thereof):

Ref [‘reflexivity’]: A = A
Cut [‘transitivity’]: if X = A and YAZ = B, then YXZ = B
Con [‘contractibility’]: if XAYAZ = B,
then XYAZ = B and XAYZ = B
Ext [‘extendability’]: if XY = B, then XAY = B

Note that Con and Ext together entail
Perm [‘permutability’]: if XABY = C, then XBAY = C

Indeed, if XABY = C, then, by Ext, XABAY = (|, and hence, by
Con, XBAY = C.

An inferential structure is a set of sentences with an inference relation.
A standard inferential structure is an inferential structure whose infer-
ence obeys Ref, Cut, Con and Ext. It is clear that within a standard
inferential structure, inference can be construed as a relation between
sets of sentences and sentences.

We will also consider ‘more global’ properties of inferential structures.
In an inferential structure each sentence can have a negation, each pair
of sentences can have a conjunction, disjunction etc. Using ‘extremality
conditions’, we can characterize these standard logical junctions as fol-
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lows (cf. Koslow (1992))8:

Conj: AANB = A; AANB = B;if C = Aand C = B, then C= AAB
Disj: A= AVB; B= AVB;if A= C and B = C, then AVB = C
Impl: A A—B= B;if A C= B, then C = A—B

Neg: A -A = B;ift A C = B (for every B), then C = —A

A standard inferential structure will be called explicit, if it has con-
junctions, disjunctions, implications and negations.

If we assume exhaustivity in the sense of the previous section, there
is no need to spell out the extremality conditions explicitly: A = AVB
and B = AV B together come to mean that the disjunction is true if one
of the disjuncts is, and the exhaustivity assumption yields that it is true
in no other case — hence that it is false for both disjuncts being false.
Hence, given this, we can abbreviate the above definitions to

Conj: ANB = A; ANB = B
Disj: A= AVB; B = AVB
Impl: A A—-B= B

Neg: A -A= B

5. From inferential roles to possible worlds

By the (inferential) role of A we will understand the specification of
what A is inferable from and what can be inferred from it together with
other sentences. Hence the role of A can be represented as <A+, A7 >,
where

At ={X | X = 4}
A = {<X1,X2,Y> | <X1AX2 = Y>}.

If the inference obeys Cut and Ref, then AT = BT iff A& B iff A~ =
B~. Indeed: (1) If A™ = BT, then as A€A™ (in force of Ref), AeB™T,
and so A = B. By parity of reasoning, B = A, and hence A < B. (2)
If A< B, then if X€A™ and hence X = A, it follows (by Cut) that X

8Note that here ‘conjunction’ does not refer to a specific sign (and similarly for the other
connectives). ‘Conjunction of A and B’ is a sentence with certain inferential properties, and
not necessarily of a certain syntactic structure (such as A and B joined by a conjunction-sign).
‘Conjunction’ can then be seen as a relation between pairs of sentences and sentences (not
generally a function, for we may have more than one different — though logically equivalent
— conjunction of A and B).
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= B and hence X€B™. This means that ATCB™. Conversely, BTCAT
and hence At=B*. (3) If A==B", then as <<>,<>,A>€ A~ (in force
of Ref), <<>,<>,A>e B~ (where <> denotes the empty sequence) and
so B = A. By parity of reasoning, A = B, and hence A < B. (4) If A
< B, then if <X ,X2,Y>€A™, and hence X14X9 = Y, it follows (by
Cut) that X1 BX9 = Y and hence <X1,X9,Y>€B~. This means that
A~CB™. Conversely, B"CA~, and hence A—=B".

It follows that in this sense we can reduce the inferential role of A
to whichever of its halves, in particular to A™. Moreover, if we write
Y1®..8Y, for the set of n-tuples of strings of formulas X;...X,, such
that X 1€Y1, ..., Xp€Y,, it is the case that

A Ay = Aiff AiTe..@A,T C AT,

and if inference obeys also Con and Ext (hence if the inferential struc-
ture is standard), then

Ay Ay = A ATNLLnALT C AT

Indeed: (1) If A;...A, = A and X€A;™N..NA,T, then, due to Cut,
X...X = A, which, in force of Con, reduces to X = A and hence to
XeAt. (2) On the other hand, it follows by Ref that A;€A;™ for
i=1,...,n, and it then follows by Ext that A;..A,€A4;" for i=1,...,n;
hence if A;TN...NA,+T C AT, then A;...A,€AT and hence A;...4, = A.
(See Van Benthem (1977, Chapter 7) for a more extensive exposition.)

Logical equivalence, <, is a congruence w.r.t. conjunctions, disjunc-
tions, negations and implications. This means that if A & A, B & B/,
C is a conjunction of A and B, and C’ is a conjunction of A" and B’,
then C' < (' (and similarly for the other connectives). Indeed: If C' is
a conjunction of A and B, then C' = A and C = B, and hence, in force
of the fact that A = A’ and B = B’, C = A’ and C = B’. But as for
every D such that D = A’ and D = B’ it is the case that then C’ =
D, it follows that C’ = C. By parity of reasoning, C' = C'; and hence
Cs .

This means that we can pass from an explicit standard inferential
structure to what in algebra is called its quotient, i.e. a structure con-
sisting of the equivalence classes (modulo <) of sentences with conjunc-
tions etc. adjusted to act on them (which we know can be done precisely
because < is a congruence). This can be observed as passing from sen-
tences to propositions, and from sentential operators to propositional
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operators”. It is easy to see that the quotient structure is a Boolean

algebra (with the adjusted operations of conjunction, disjunction and
negation playing the role of join, meet and complement, respectively).
Then, in force of Stone’s representation theorem'®, it can be represented
as an algebra of sets of its own ultrafilters. And as its ultrafilters corre-
spond to just the maximal consistent theories, each sentence A can be,
from the viewpoint of its ‘inferential potential’, characterized in terms
of the set of those maximal consistent theories to which it belongs.
Now these theories can be seen as descriptive of ‘possible worlds’ rep-
resentable by the language. Moreover, if the language in question has
the usual structure of that of the predicate calculus, then the theories
can be used to directly produce the ‘worlds’ — i.e. models — by means
of the well-known construction of Henkin (1950). This means that the
standard possible-worlds-variety of semantics can be seen as a means of
representing a certain (standard) kind of inferential structure.

6. Representing non-standard inferential
structures

Non-standard inferential structures yield us, in this way, non-standard
varieties of semantic representation. If we withdraw Con and Ext
(which is suggested, e.g., by considering the anaphoric structure of natu-
ral language, which appears to violate Perm), then the inferential struc-
ture ceases to be Boolean and does not yield the standard possible world
semantics.

The closest analogue of conjunction within such a setting is what is
usually called fusion (Restall (2000)):

Fusion: if X = A and Y = B, then XY = AoB;
if X = AoB and YABZ = (|, then YXZ = C

Assuming Cut and Ref, we can prove the associativity of o: The defi-
nition yields us, via Ref,

9n fact, the inferential roles as defined here (which I called the primary role elsewhere
— see Peregrin (in print)) are reasonably taken to explicate propositions only in case of
inferential structures which are at most intensional (i.e. for which logical equivalence entails
intersubstitutivity w.r.t. logical equivalence, in the sense that for every A, B and C, A < B
entails C < C[A/B]). For hyperintensional languages we should consider secondary inferential
roles, which are not only a matter of what A itself is inferable from and what can be inferred
from it, but also of what the sentences containing A are inferable from and what can be
inferred from them.

10See, e.g., Bell & Machover (1977, Chapter 4).



34

(i) AB = AoB; and

(i) if YABZ = C, then Y (4oB)Z = C.

These can then be used to prove, with the employment of Cut, that
Ao(Bo(') & ABC < (AoB)oC. Moreover, under such assumptions we
can show that if C is such that <> = C (i.e. it is a theorem), then
BoC < B < (CoB: for (i) yields A = AoC and A = CoA, whereas (ii)
yields the converse.

This means that if the structure has fusions and there exists a C' of
this kind (which is certainly the case if we assume some suitable ‘pro-
toclassical” versions of disjunction, implication and negation), the cor-
responding propositional structure (i.e. the quotient structure modulo
&) is a monoid'!. In this case, the most natural thing appears to be
to represent the propositions as some kinds of functions. And indeed it
turns out that the inferential potentials of the sentences A can be now
represented as

A'={<X ,XY>| Y = A}.

In this case, it follows from the results of Van Benthem (1977, Chap-
ter 7) that (where e represents functional composition)

A1 Ay = Aiff Aj%eeA* C AF

Indeed: (1) If A;...4, = A, then if <X , XY >€cA;"e...04," then Y
= Y... Yy, where Y; = A, and hence (due to Cut) Y;...Y, = A; hence
<X, XY;..Y,>€A*. (2) If, on the other hand A;*e...e 4,* C A* then,
due to Ref, <X, XA;...A,>€A* for every X, which means that A;...Ay
= A.

Thus, in this way inferential roles yield one of the common varieties
of dynamic semantics based on the so-called updates'?.

7. Consequence via inference

All of this apparently suggests that we can construe the common
creatures of formal semantics, such as intensions or updates, as ‘encap-
sulated inferential roles’. However this yields us straightforwardly always
the Henkin semantics, not the standard one — and hence also never the
Tarskian ‘second-order’ consequence. (Thus, the inferential structure of

"' That dynamic semantic is “monoidal semantics” is urged by Visser (1997).
12Van Benthem (1977, Chapter 7) also discusses other varieties of dynamic semantics corre-
sponding to other ‘subclassical’ sets of assumptions about inference.
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Peano arithmetic yields us more than one ‘possible world’ [= model],
which blocks every natural number has the property P being the conse-
quence of {n has P}n=1 . ). However, if we admit that ‘enumerative’
inferential patterns, such as those governing the expressions of Peano
arithmetic, incorporate implicit exhaustivity assumptions (in the very
way inferential patterns characterizing logical operators do) and hence
involve extremality (in the sense of Hintikka (1989)), we can see infer-
ential roles as yielding even the standard semantics and ‘second-order’
consequence.

Indeed: look at the Peano axioms as a means of enumeration of nat-
ural numbers (and there is little doubt that this was their original aim).
What they say is that zero (or one, which was their original starting
point) is a number, and the successor of a number is always again a
number. This yields us the standard natural numbers, but cannot block
the occurrence of the non-standard ones after them. However, if we add
and nothing else is a number, we cut the number sequence down to size:
only those numbers which are needed to do justice to the Peano axioms
are admitted; the rest are discharged.

To avoid misunderstanding, I do not think that the exhaustivity as-
sumption can be somehow directly incorporated into logic to yield us
a miraculous system which would be both complete and have the stan-
dard semantics — this, of course, would be a sheer daydream. If we
admit that our inferential patterns do contain the implicit exhaustivity
assumption, we must condone the fact that therefore the patterns cease
to be directly turnable into proof-procedures. My point here was that
we can get semantics, even the ‘most semantical one’, out of something
which can still reasonably be seen as inferential patterns; and thus we
vindicate the Wittgensteino-Sellarsian claim that what our words mean
cannot ultimately rest solely on the rules we subordinate them to.
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